Convergence of SDP hierarchies for polynomial optimization on the hypersphere
نویسندگان
چکیده
We show how to bound the accuracy of a family of semi-definite programming relaxations for the problem of polynomial optimization on the hypersphere. Our method is inspired by a set of results from quantum information known as quantum de Finetti theorems. In particular, we prove a de Finetti theorem for a special class of real symmetric matrices to establish the existence of approximate representing measures for moment matrix relaxations.
منابع مشابه
A Note on Sparse SOS and SDP Realxations for Polynomial Optimization Problems over Symmetric Cones
This short note extends the sparse SOS (sum of squares) and SDP (semidefinite programming) relaxation proposed by Waki, Kim, Kojima and Muramatsu for normal POPs (polynomial optimization problems) to POPs over symmetric cones, and establishes its theoretical convergence based on the recent convergence result by Lasserre on the sparse SOS and SDP relaxation for normal POPs. A numerical example i...
متن کاملEquality Based Contraction of Semidefinite Programming Relaxations in Polynomial Optimization
The SDP (semidefinite programming) relaxation for general POPs (polynomial optimization problems), which was proposed as a method for computing global optimal solutions of POPs by Lasserre, has become an active research subject recently. We propose a new heuristic method exploiting the equality constraints in a given POP, and strengthen the SDP relaxation so as to achieve faster convergence to ...
متن کاملA note on sparse SOS and SDP relaxations for polynomial optimization problems over symmetric cones
This short note extends the sparse SOS (sum of squares) and SDP (semidefinite programming) relaxation proposed by Waki, Kim, Kojima and Muramatsu for normal POPs (polynomial optimization problems) to POPs over symmetric cones, and establishes its theoretical convergence based on the recent convergence result by Lasserre on the sparse SOS and SDP relaxation for normal POPs. A numerical example i...
متن کاملConvergent Semidefinite Programming Relaxations for Global Bilevel Polynomial Optimization Problems
In this paper, we consider a bilevel polynomial optimization problem where the objective and the constraint functions of both the upper and the lower level problems are polynomials. We present methods for finding its global minimizers and global minimum using a sequence of semidefinite programming (SDP) relaxations and provide convergence results for the methods. Our scheme for problems with a ...
متن کاملSums of Squares Relaxations of Polynomial Semidefinite Programs
A polynomial SDP (semidefinite program) minimizes a polynomial objective function over a feasible region described by a positive semidefinite constraint of a symmetric matrix whose components are multivariate polynomials. Sums of squares relaxations developed for polynomial optimization problems are extended to propose sums of squares relaxations for polynomial SDPs with an additional constrain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1210.5048 شماره
صفحات -
تاریخ انتشار 2012